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ABSTRACT

The plane wave representation is generalized in terms of a three-dimensional
Fourier transform, to yield an expression, which when combined with the
incident field, gives the total electric field everywhere inside and outside
non-magnetic scattering bodies. This representation requires the knowledge
of the scattering matrix and its analytic continuation in the frequency domain.

The use of short pulse data to determine the properties of uniformly
coated bodies is considered, where the main attention is applied to the illuminated
portion of smooth convex bodies at high frequencies.

Computational results are obtained, establishing the conditions that are
required to determine the surface of a conducting body from knowledge of the
total near field. It is shown for the cases treated (sphere and prolate spheroid),
that two separate conditions are required. One of these conditions yields a
single surface which is an approximation to the proper surface, whereas, the

other condition yields a set of surfaces, among which is the exact surface.
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INTRODUCTION

In section 11, the plane wave representation is generalized in terms of
a three-dimensional Fourier transform. The resulting expression when combined
with the incident field yields the total field everywhere outside and inside
non-magnetic scattering bodies. This representation requires the knowledge
of the scattering matrix and its analytic continuation in the frequency domain.
The main emphasis is placed upon homogeneous bodies, a special use of which
is the conducting body, and various relations are obtained. The extension to
non-homogeneous bodies is briefly considered. The results presented here are
not complete, since a significant amount of analysis has yet to be performed.
The possibility of correlating monostatic short pulse data and bistatic data
for a fixed frequency and direction of incidence may be achievable.
The use of short pulse data to determine the properties of uniformly coated
conducting bodies is considered in section III. The main attention is focused
upon the illuminated portion of smooth convex bodies in the high frequency case.
Finally in section IV, computational results are presented. It is shown
for the two cases of conducting surfaces, the sphere and prolate spheroid,
that the two conditions I§S| - |§1| =0, and E x E¥=0 are required to
establish the surface of the body from knowledge of the total near field. The
first condition yields a single surface which is an approximation to the proper

surface. The second condition yields a set of surfaces, among which is the

proper surface.



II

THE PLANE WAVE EXPANSION AND ITS
APPLICATION TO INVERSE SCATTERING

It has been shown previously, that if the scattered far field (phase,
amplitude and polarization) is known over all directions of observation, for
a fixed direction of incidence, then a particular class of plane wave representations
yielded expressions for the near field which held down to the surface of smooth
convex bodies. The plane wave representations involved, contained the far
scattered field as an analytic function of the angles of observation. The use of
the plane wave representation will be generalized here, to yield expressions
that hold everywhere in space including the interior of the scattering body.

To begin, the analysis will be restricted to non-magnetic bodies (although
it could be easily generalized to include such cases) and the geometry of the
scattering body will be limited by placing certain restrictive analytical properties
on the surface S which encloses the volume V of the scattering body. The
classes of surfaces chosen, will belong to class 03 defined by Barrar and
Dolph as follows:

A surface S is said to belong to class 03 if there exists a finite number
m of images, x = xv(u, v), yv = yv(u, v), 2’ = 2%(u, v), v=1.2.3... m of the
disk u2+ v2_<_ 1 that cover the surface S and such that the third derivatives of
xv, yv and zV with respect to u and v exist and are continuous.

Harmonic time dependence exp{-iwt) will be taken in which case Maxwell's

equations become

VAE =ik [ufe H |
2 o
k inside the body
holey T AH = -HE/ W) ,

k outside the body

where kf, the square of the propagation constant in the body, is associated with



2
the free space propagation constant k, i.e. k1 = k?(k).

The incident electric intensity will be expressed in the form

Ei = (27r)—3/2 & SR X (2.1)

where k is the direction of the incident wave, and a, the unit vector denoting
polarization, will depend upon both k and index j (i.e. a = a (ﬁ, j) where the
A
index j takes on the value 1 if the polarization is in the 6§ direction of a fixed
N

coordinate system, and takes on the value 2 if the polarization is in the §

direction.

Homogeneous Body

The homogeneous body will be treated first. In this case, it follows
from Banar and Dolph, that the total electric intensity E induced by the plane
wave Eq.(2.1), incident upon the body, satisfies the following integral equation

(which has a unique solution)

E(x) = E (x) + ¢Edv-Lv- #(E -n)ds
. 47 = 2 = _—
\' K S
(2.2)
where
kB
p== s R =(x-x")

and E- is the value of E obtained by approaching the surface from the interior

+
of the body. If E is the value obtained by approaching the surface from the exterior
of the body, it follows that

2 _.- 20 ok
kl

E-n =k E-n ; (2.3)



In addition, the magnetic field can be expressed in the form

Hix) = K@+ ———— ¥ A E fdv . (2.4

Before deriving a plane wave representation for E(x), the following

vector will be introduced

2 .2
(k =ls ) 1Y, 5! 1 5 T
T (k' k) = = e KX gy wav - 2K kX' g g
S Aig e 3/2 St 2 S
(2m) v k =
(2.5)
From Eq.(2.2), it is seen that when |x| — o, in the direction given by
the unit vector k', then the total field becomes
i Fi eik I—)-"
Ex ~ EW®+ [5 T (k' k) (2.6)
|x|»® x|
indicating that the vector T (k' , k) is related to the scattering matrix. When
|k'| = |k| ,  T(k',k) is a measurable function being proportioned to the far scattered

field in direction k', produced by a plane wave of frequency ck, incident upon
the body with direction of incidence given by ﬁ . The following theorem may
now be proven.

Theorem:

t L s —o ¥ B, (2.7
(27)

then é(l{l.l{) = § (l{_l_{')é = i I(B'tk)

(2.8)
e»0 k - k'2+ ie



Proof:
It follows from Eq.(2.2) that

(kf-k2> 1 filicta
(. k =6 (k-k)a+ E(x,k [e = % pdxdv
= 4r 3/2 s =
(27) v

1 e—“-{"5
= 2 3/2 Y : ¢(E"_ﬂ) ds
Kk (27)
S
On setting
Y = p(E - n) ds
S
one can show that
-t et woitd t. o i
el'l-{EYl//d5=llm ell_( El//dS'*‘il_(' eil_{ l{ﬁ//d}_{
R— o
Q0 S
6]

when S00 is the surface of a sphere of radius Roo' Letting k have a small
imaginary part, it is seen that the surface integral will vanish when R & @ -

The resulting integrals can be reduced as follows

ik ip-(x-x')-ik' x
__13/3 ell{§¢d5=/§_i§ dpdx 5
(27) (27) p -k -ie
=i e
_ /2 (B Ml :
'/: @ 5773 5 ip~ X

p -k -ie




- "
[ e = =
T o e
Combining the above expressions, one obtains the result

Eucoi - 5 (kokda - tim LUK

2
€—=0 K -k'2+i€

An immediate consequence of the above theorem, is the following corollary
which expresses the total field everywhere in space in terms of the incident

field and the quantity T (k', k),

i 1 elfp"’-{

== (277)3/2 2 k2

T(pk)dp . (2.9)

If the integration space p is expressed in spherical polar coordinates (p, Gp, ¢p)
where the range of the variables are ~-o<p <o, 0< epg 7/2, and
0< ¢p_<_ 27 , then in the above integral, the contour of the variable p bends
above the pole at p = -k, and below the pole at p=k .

it can be shown in a similar manner that the magnetic field can be

expressed in a similar form

1 el‘p'5

wuo(27r)3/2 pz_ 2

H(x, k) = P_Ii(z'BH pAT(pk dp . (2.10)

Integral Equation for T (k', k)

Applying the condition that V - E = 0 in the volume, one can express

Eq. (2.5) in the form




2)
k -k 1 (1!
< At E( e s ) } dx (2.11)

(2w)

where the surface integral is replaced by a volume integral. On substitution of

Expression (2.9) for E, Eq. (2.11) reduces to the integral equation

119 = (18- Kk2) [1 - KUK ) el -ik'- x
e - @ OR-SR] T [ e
Vv

= /—SRT /‘eim'l""5 dx f_Np,l_d}
(27) p -k "

Defining V(k',k) to be the Fourier transform of the body, as follows

VK, k) = — R o) - T (2.12)

(27r)3 v

one obtains the following fundamental integral equation for T,

<k%- k2) a V(k, k') + i%_v_(‘g_k_') T(p, K b = T(K',K - kz'(kv.zT)
p-k K - K

(2.13)

For the case of almost transparent bodies, i.e. where

(kf k%) V (k)

is small, an approximate solution to the integral equation is obtained through

a process of integration, yielding the Born approximation



T (e~ A KK Ja Vi k) + [dp SRS AUV pat. ..
p -«

where A (k', k) is the operator

v( [
A = (%) {1--5—25-—)— -J

k

For the case of a perfect conductor,i.e..Im k?

cannot be used by itself. An additional equation is required. The details on

-, the integral equation (2. 13),

the particular aspect are given later on.
Relationships Among T (k', k)

In order to attempt to reduce the number of measurements needed to
determine the scattering body, or in order to correlate different sets of
measurements (such as for different directions of incidence), various relationships
involving T (k',k) for different k' and k are sought.

Denoting the complex conjugate of a quantity be a super bar, it can be
shown that

Hence it follows that the complex conjugate of Eq. (2.13) yield for kf real

Y 5) FTpup- Tl - Sk 2)
p -k -

(%) 42 Vi K0+ | dp

(2.14)
In the above equation, replace k by -k, and k' by -k'. In doing so, the

polarization vector a must be changed appropriately, i.e.

alk ) = e, a(-k j)



where

ej = 1 for j=1

= -1 for j=2

This results in the following

% il 2 ; V(p,k") =
(kl" k ) Ej a (‘}_(, J) V(}_(,l() + d P '—p'z_—l?— I('B,-l()
= k'(k'- T
= T(_l("_l()_ :—g% (2.15)

k' -k

It follows that on subtracting Eq. (2. 15) from Eq. (2.14) for j = 1, and adding

them for j = 2, that the vector
T (kK }) - €, T(-k',-k I

is a solution of the homogeneous equation corresponding to Eq. (2.13).

Since the solution is unique, the following must hold
= 2
T(k'k j) = € T(-k' -k j); k| real (2.16)

This result holds only for k2, real and finite. However it can be shown that
it will also apply to the case of a perfect conductor, where Im k1—> o .
2
For general real or complex values of k1 , an additional set of relations

may be obtained. To proceed, we first note that

dk' V(p, k") V(k'.k) = V(pKk),



hence upon operating on Eq. (2.13) with respect to

dk'V(k',q . ..
it is seen that the left-hand side is invariant. Defining

2 .2

T (k', k) {1- -k—“-‘-'—-)—] T (k', k) (2.17)
K-k

one immediately obtains the result

dpV(pk) T(pk = T(k' Kk . (2.18)
This equation will be shown to the additional equation required for the case of
a perfect conductor. For present purposes, this equation, combined with

Eq. (2.14) which can be expressed in the form

Vp, k')

T(p, K} = T,k (2.19)
p2- k2

-1 a Vi) + [ap

can be used to eliminate the volume factor V(k',k) . In Eq. (2.19) replace

k' by -q, and operate on the equation with an arbitrary unit vector b, yielding

_b.é V(g‘_l()-}- dB V_égizg)__b-I(E’l_() = L-z-_rl‘(—%ﬁ
po- K K - K

Operate on this equation with the integral operator

dq T(q k"

10



and employ relation (2.18) to yield

b-a

=R

' dp . T '
(-k ) +/§2._k2_ [b-T@B] Fepk

=(k—2ik3>— /dy [2-i<-2,1_<)] T (p k) (2.20)
1

Since b is an arbitrary unit vector, this equation constitutes three independent
equations. For the case of a perfect conductor, the right-hand side of Eq. (2.20)
vanishes. It can be shown that for the perfectly conducting case, Eq. (2.20) will
yield the law of reciprocity when lk" = |k| ;

Extension of the Integral Equation to the Perfectly Conducting Case.

Before considering the case where Im k?

decomposition of the field into the interior and exterior components will be

— o , an analysis upon the

+ =
treated. The vector T will be decomposed into parts T and T as follows:

{ ) olR X 3 E(x,k) for x outside V
E + 373 5 T dp = (2.21)
(27) p-k 0 for x inside V ,
) olR X ~ E (x,k) for x inside V
37z = T dp - (2.22)
(27) p -k 0 for x outside V

s V) + | dp w222 T (ppdp = 0 (2.23)

81



and from Eq. (2.22)

T (k,k  _ 1

St E(x, k) e = = dx
k' -k (27r)3/2
v
- : V(p, k" Vipk') .-
= aVi(kk)+ [ dp T (p, k) dp —5=- T
p -k p -k
(2.24)

Applying these results to Eq. (2. 13), one obtains

2 2N\ L
T (k' k) = <—3-'—2> Tk k , (2.25)
K -k

+ =
from which the following relationship between T and T may be derived

k' <k i ) +
T (k', k) > k' (k- TOp. (2.26)
= k'

kl(k'—k) a

Hence on eliminating I_ from Eq. (2.24), one obtains the additional equation

+
for T
2
= +
<k1 k> k'(k'- T )
2

+

T (k', K-

-7 Kk B g

1
(k 'k'2> + <k kz) +
= dp V(pk' iy p(p-T)
<k k =)
(2.27)

12



The case of perfect conductivity may be considered by letting Im kf > .

It is seen from Eq. (2.25) that

T (k' k) — o(i>
1

i.e. T~T++0<L> ,
= = 9
ky

Eqgs. (2.23 and (2.27) reduce to the form

aVikk) + [ dp -VT(LIZQ- Tk =0 (2.28)
p -k
T,k = /dpVip k") T(pk . (2.29)

These two equations constitute the two integral equations that are required for the
case of the perfect conducting body. Eq. (2.28) insures that the total fields

vanish inside the body, whereas it can be shown that Eq. (2.29) corresponds

to Maue's integral equation. The problem with working with Maue's integral
equation by itself, is that it does not always yield a unique solution, since there
exists a set of resonant frequencies such that non-vanishing interior fields

satisfy the condition n x E vanish on the surface of the body. Thus the additional
Eq. (2.28), removes this uniqueness problem by requiring that the field vanish
inside the body.

Alternative Representation Exterior to the Body

For a fixed direction of incidence, the quantity T (k' ,k) is required

for all values of k', in order to obtain expressions for the field everywhere in

13



space. However it will be shown that restricting the requirements on the knowledge
of T(k',k) to the values of k' which lie on the sphere | k'| = |k| , the total
field can be obtained everywhere outside the minimum convex surface enclosing
the body. To show this, let the plane z = z be the tangent plane of the body,
such that the body lies in the half-space z < z, - For points in the half-space
z > Z, the following representation of the near scattered field
8 ) 1 eip "X

(27r)3/2 p2— i

can be reduced as follows:

Set P, = k sin o cos B
p = ksinasinf
y
p, = kq

when the domains of integration are
0<B<2r, O0<a<7/2-icm, and ~©< q< ®

Expression (2. 30) becomes

m/2-i
E_S = T(E’ k) g, B, @ cosasinadodBd¢
(27r) 2_cos%e- ie

(2.31)

g = exp {iksina(x cosB+ysinB)+iqzk} .

From expression (2.5) , it can be seen that for z > z the contour in the

following integral

14



e 7 (p, 1) dg

s cosza ie
_m q

may be deformed, to yield the following

exkcosaz T(ksinacos B, ksinasinf, kcosa; k)

Hence expression (2.31) may be placed in the form

r[2-i [ 27

i t
Es = -;%r e15 X Eo(a,ﬁ)sinadadﬁ (2.32)

where

k' = k(sin o cos B, sina sin B, cos a)

and E_O is the amplitude and phase of the far scattered field in direction
given by (0, ), i.e.
ikR
S e
R

E (6,0 .

Expression (2. 32) was developed by alternative techniques in earlier reports
(Weston, Bowman, 1966).

The Inhomogeneous Body

The results may be extended to include inhomogeneous non-conducting
2 2 2
bodies, i.e. where k1 = W eu (a real function) and k1 varies continuously
in the medium. In this case, the appropriate integral equation for the total

electric field is (Barrar and Dolph)

15



i1 2 2 v 2 2y, -
E=E+ o g (;-K) Eav- —— $ (K -K")(E™n) ds
47k
s
S
v 1

which has been shown to possess a unique solution, although its existance has

not yet been proven.

For the homogeneous body, it can be shown that

@)
-ik'- i,
T (k" k) = —'1—3/'5‘ e @f-k2> E dv - ik' o 1K' x __15_
(27) 7 .
2
EEE)
v 5
-i k! ' '
=___1_372_ IR @_k E_k(kE)]dv

In this case, the appropriate integral equation becomes

"
~ K '
Taew = Cav e+’ | L2E 7(p10ap
P-k
where
* 1
v k) = 13 el(k k") [N—l] T
(27) v

16

(E-n) ds



I

ASPECTS ON PULSE SCATTERING FOR THE DETERMINATION
OF UNIFORMLY COATED SCATTERING BODIES.

3.1 Introduction.

A convenient method for the identification of uniformly coated scattering
bodies may employ the application of pulse scattering since more information
may be obtained by such a transient analysis than from steady state results.
The distortion of a pulse returned from a scattering obstacle, in fact, does
yield some additional information pertaining to the properties of the scat-
terer, e.g. the behavior of the leading wavefront of a scattered pulse usually
indicates something about the composition of the body, whereas the behavior of
the trailing return of a scattered pulse is related to the shape of the body and
its radii of curvature.

In this preliminary treatment on the identification of coated scatterers,
the merits and the restrictions of such a transient approach will be investigated,
using the solution of pulse scattering by planar layered structures where both
the mono- and bi-static solutions of the scattered field will be considered.

Here the wavefront technique is employed to solve the problem of
scattering of a finite rectangular pulse from a lossy dielectric slab mounted
on a perfectly conducting planar surface. The general case of oblique incidence
is treated, where in particular the behavior at normal and at critical (Brewster's

angle) incidence are demonstrated.

17



From the presented theoretical results practical methods will be deduced
which may be applied to the problem of identification of the properties of
uniformly coated scatterers.

3.2 Theory
3.2.1 The Laplace Transform of Maxwell's Equations and the Boundary

Conditions.
The solution of a non-steady state problems in electromagnetic theory is
facilitated by a transform type approach. Here the Laplace transform will
be used since it is defined for a wider class of functions than the Fourier
transform, in particular to the extension to more complicated source dependence.
The Laplace transform of a function f(t) is defined by the relation
0

Lifw]= | fwe tat

F(s) (3.2.1)

The inverse transform from the s domain to the t domain is accomplished
by means of the relation
B+ioo
L [Fe)] = == F(s) e ds (3.2.2)
2ni e
B-im

where B, a positive constant, is chosen such that F(s) is analytic for

Re {s} > B. In particular the relation holds:

ot i Bl el 4
=t} — s"F(s) - > s F (0) (3.2.3)
ot" =0

The vector wave equation, satisfied by the transformed field vector _ (r, s)

is given by

2
vaXf<r,s)+s—2<1+-3) bir g 2 s 255 @0
== & €S = c2 €s = =
T
= o 3 E (r, 0) (3.2.4)

where ue = 1/02.
18



The equation of the transformed magnetic field vector Z/ (r, s) is
obtained by replacing é by Q{ and E by H Since the quantity of interest
here is the scattered field, it is always possible to define the time origin
such that the initial values of the scattered field are zero everywhere in
space, and thus the transform of the scattered field vector satisfies the

homogeneous vector wave equation:
s 82 g s
vV x VxZ(r, s)+—(1+—)g (r, s) =0 (3.2.9)
— = Cz €8 =

The boundary conditions satisfied by the em field vectors at the interface of
two media (the normal to the interface n, a unit vector, is directed from
medium (1) to (2)) are given by the familiar relations:

a) Both media of finite conductivity:
n x| Ey(r, t) - E,(r, t)]= Oorn xl:zz - Zl(g. S)]= 0
n x Hz(g_, t) - gl(r, t)] =0orn X[ZZ(E' 8) - Zél(_x_-, s):) =0,
b) Medium (1) being a perfect conductor:

nx E_(r, t) =0 or gx{z(g, s) =0

2

xl__iz(r, t) = K(r,t) orn x 2{2(1', 8) = X(r. s)

1=]

In cases where the approximated Leontovich boundary conditions

!
=4
»
——
=
o
=

2
<

"

ZnxHr 1)

with Z, the surface impedance, may be implied, the transient problem must

(3.2.6)

(3.2.7a)

(3.2.b)

be handled with care, since the error introduced in the solution of the diffraction

19



w . 8
of a harmonic wave (k = <5 = ig ) by a curved obstacle of curvature

p and refractive index n_, is of the order of (nlz—sée)-l. Thus only the

behavior of the scatteredlzfields in the vicinity of the wavefronts which is
related to the asymptotic behavior of the transformed field quantities for
large values of the transform variable s, can be properly derived. Con-
sequently the application of the Leontovich type boundary condtions will lead
to erroneous results for the field vectors when the time delayed from the
arrival of the wavefront is large.

3.2.2 Expansion of the Transformed Field Quantities as a Series of

Time-delayed Terms Determined by the Optical Wavefronts.

In Steady state electromagnetic theory it has been shown that the
field scattered from an obstacle can be obtained by summing the contribution
due to the various optical rays associated with the scatter geometry of the
obstacle. In transient analysis such fdmilies of rays may in addition be
characterized by time delay factors due to the geometry of the obstacle.
To verify this aspect two different types of problems will briefly be con-
sidered.

3.2.2.1 Pyse Scattering from a Finite Obstacle

Consider the configuration of Fig.3-1 where a plane wave is incident

on a finite obstacle of closed surface.

Ref. Plane

T

l

|
]
Scatterer

"
+—
ey
Plane Wave

FIG.3-1: GENERALIZED RAY SYSTEM.
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The scattered ray E° is the conventional geometrical optics result, where the
position of the specular point T is determined by the requirement that the
optical distance between reference plane-scatterer-observation point is a
minimum., In addition two families of rays Zm:clm and = sz, the
creeping wave contributions, must be considered, where the mth term

in the sum %Cim is associated with the ray which undergoes m complete
circulations around the obstacle and then travels to the observation point.

The path on the obstacle taken by each of these rays is determined by the
condition that the optical distance be a mini mum.

Since wavefronts of non-monochromatic waves satisfy geometrical
optics, the above described diffraction process in conjunction leads to the
hypothesis that the solution of the pulse diffraction problem will be facilitated
if the terms corresponding to the various monochromatic optical rays are
identified and treated separately. The result is expressed in the form of
an infinite sum of residue and branch cut contributions, where tlgg individual
contributions must be summed in a manner such that the rays Z Sim(i= 1,L)

m=n

are absent for t < Tn'

3.2.2.2 Pulse Scattering from Layered Structures.

Another class of problem is demonstrated in Fig.3-2, the problem of

pulse scattering from a nonperfectly conducting slab. The incident pulse will

|
E 1
e =
Q0
o] / ES(I'. t) = E E;(E' t+m7)

s / — B m =0
Ref. Plane of 2

incident wave /
®' ® ©®

FIG. 3-2: PULSE SCATTERING FROM A DIELECTRIC SLAB.
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be decomposed into an infinite sum of partial pulse returns, where each
of the partial returns are delayed by a time factor Tu' depending upon the
material properties and the depth of the layer. The amplitudes of individual
partial returns are obtained by selecting the proper coefficient of the expanded
CW reflection coefficient.

3.2.3.3 Geometrical Optics Interpretation.

From the two presented examples it consequently seems that the solution
of pulse diffraction problems can be handled most efficiently by treating each
term in a wavefront expansion separately, where the amplitudes of individual
wavefronts are given by the corresponding term of the expanded CW scattering
coefficient.

The solution of the vector wave equation (2.5) for the transient case
is obtained in the same manner as the solution of the vector wave equation
for monochromatic fields. In general, the transform of the field vector
{8(5 8) can be expressed as the result of the same vector operations on two
scalar functions which are solutions of a scalar wave equation. Consequently,
in discussing the decomposition of the field into its optical components, it
will suffice to investigate the behavior of a scalar function F(r, s) which

satisfies the scalar wave equation:

2
V2 Fr, ) - Z—2<1+ L) F(x 8 =0 (3.2.8)

where F(r, s) will be rewritten into the form of a sum of terms which can
be identified with the partially delayed optical wavefronts:

o Af2.0
-s(1+€8 ) Tm(z)

[90) [0.0)
Fo o s 2 Fpls 9 mzo Uz o) € (3.2.9)

Thus the following relation is obtained:
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2
i s g _
_ [VZ - cz £ of EJ Fm (r, 8) =0 (3.2.10)

m-
Operating on Fm(_l:, 8) and equating the result to zero, it is found that the

functions Um(g, 8) and T;(g) must satisfy the relation:

2 g o, |2 _1 g \1/2
s (1+ es)[‘VTm(s)’ - 02] L (r, 8) -8(1 i ) [2VUm(£, 8)

v (r) + U (r, 8)V° T° (r):\ +9%U (r, 8) =0 (3.2.11)
m m = m: == m —

where the spatial time factor T;(g_) must satisfy the Eikonal equation

2 2
1/c (3.2.12)

’V T0 (r)
o

If s is replaced by s = -iw and o = 0, the remainder of Eq.(3.2.11) is
identical with the equation satisfied by amplitudes of the geometrical optics
waves in the asymptotic theory of diffraction

3.2.3 Behavior of the Fields in the Vicinity of the Individual Wavefronts.

The field behavior in the vicinity of the individual wavefronts can be
obtained by considering the asymptotic behavior of the transform of the field
vectors for large values of the complex frequency s. This implies a
Tauberian theorem which is obtained from an Abelian theorem given by
Bremmer and van der Pol (Brown, 1962) as:

If a one-sided original [here time function f(t)] is represented asymp-

totically as t — O + by some power series of not necessarily

integral exponents exceeding -1, their the series in s, obtained

by transposing the original term by term represents the image

Euere Laplace transform F(s) = L[:f(t)]]asymptotlcally as s — .
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However, here the inverse of the theorem must hold as well which will
enable to determine the asymptotic behavior of the original time function

as t — O+ from the asymptotic representation of the image as s — .

In order to justify the use of the '"Tauberian Theorem' which is the inverse
to the above Abelian theorem, the nature of the time functions resulting
from the inversion of the asymptotic representation of the image must be
considered.

A time function of the form:

a0
°3€(£,t)=aa( °) +U(t-t) gat""’ (3.2.13)
0 = n

has a Laplace transform if @ > -1, where the inverse is given as

t -t

-st @
F(r, s)=e ° l:a + Z a [ me D:I (3.2.14)

=
n=0 I Su @ 1 a> -1

consequently, since the transform of the field vectors is obtained as a
solution of a vector wave equation and if for such, in general, a Laplace
transform exists, it can be said that the transform of a vector field must
be representable in the form of Eq.(3.2.13)in the vicinity of a wavefront
(for a rectangular pulse similar holds). With the above stated theorem,
allowing for an asymptotic expansion for large s, it is reasonable to assert
that the asymptotic representation of the inverse of these transforms can
be obtained by a term by term inversion of their asymptotic representation
for large s.

Using the expansion of Eq.(3.2.9), it can be shown that for large values

of s this equation can be rewritten as:

24



1im (s) = lim o 1

S>>1Fs=mos>>lu (r, s)exp[ (”225'5 )) T(r)] (3.2.15)

The time function which corresponds to the mth term in(3.2.15)willbe zero
for t < T?n(g). Since T(:n(g) was chosen such that it satisfies the Eikonal
equation, the equation t = Tfn(g) describes the arrival of the mth wavefront
at r. The amplitude of the disturbance associated with the wavefront is

given by lim Um(g, s). The function Um(g, s) satisfies for 8 —» o0:
S —» 00

2 VUm(;. 8) - VT;(E) + U (r. s) v? T;(g) =0 (3.2.16)

which is the equation satisfied by the amplitude of waves determined by
geometrical optics . Thus it is apparent that in pulse diffraction
problems the amplitudes of the waves at the wavefronts are determined by
geometrical optics.

3.2.4 Behavior of the Fields when Lt =g (r)]L > 1.
m =

Neglecting the losses (0 — 0), the inverse transform for the mth term
in the wavefront expansion(3.2.9)can be formulated as:
B+im

gz, I[F (r, s):] 271 Um(g. s) es[t ‘T;(E)j] ds (2.2.17

B-im

where a typical amplitude function U (r s), in general, will have both poles
and branch-points in the region R(s) < B. The fact that [t - TO (r)] >> 1
necessitates the deformation of the contour of integrationin(3.2.17)into the

left hand plane, where Re (s) < 0. If I:t - T;(;):l R >> 1, the most signif-
icant contributionto(3.2.17)results from the singularity which has the maximum
real part. In Fig.3-3, a distribution of poles and branch cuts is demonstrated

for the case of plane wave diffraction by a finite convex body. In this case
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the pole along the imaginary axis at s = - iwo and the branchpoint 8 = =0

c
are the significant singularities, where the contribution from s = - iwob:/)ields
the CW behavior and the integration around the branchpoint o 0 will describe
the deviation ofﬁ_l Em (r; s)-J from its steady state behavior. Depending

upon the relative value of [t = Tfn (g)] R ~ 1, the contributions of the other
singularities may have to be encountered, not so for[ - T?n (5)] R>> 1.

In fact for |t - T(r)n (r)|R = 1 the exact solution of F_ (r, s) is required,

which in most of the cases can only be approximately solved.

3 oD The Dispersive Effect Due to the Presence of Finite Con-~

ductivity or the Properties of Layered Media.

3.2.5.1 Finite Conductivity.

Although the constituent parameters u, €,0c have been assumed to be
individually of a nondispersive nature, the fact that o # O introduces a dis-

persive effect, since
e e(1+%) (3.2.18)
€8

Assuming a non-conducting propagation media, the inherent source of dis-
persion then may be related to the effects of the conducting obstacle only.
Applying the results of section(3.2.3) toequation 3.2.18), the behavior of the

reflected wave solution in the vicinity of its wavefront is determined as

lim el = lim € (1 +gs—)=e (8:2. 19)
8 —=® 8—»®

This indicates that even a good conductor acts like a dielectric in the

immediate vicinity of the wavefronts, i.e. the reflection coefficient is

determined by the dielectric constant only. This property will be shown

in the next section, where the transforms of the individual field vectors

are derived explicitely for the scattering from a lossy slab mounted on a

perfectly conducting planar surface.
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As long as oblique incidence is excluded, in general, it can be said
that the dispersive effect of a conducting media is solely caused by the fact
that o ¥ 0. The significant parameter in the assessment of the magnitude
of the dispersive effect is the relaxation time 7 = (27)/ (o / €), where
w, = (2m)/ L (0 / € may be denoted as the critical radiant frequency of
the medium. K o>> 1, l.e. W, >> 1, then, in general, the dispersive
effect can be neglected since signals decay in a time of a few relaxation
periods 7. It appears that the dispersive effect cannot be detected if
wc >> wmax where wmax is determined by the high-frequency cut off of
the detecting device. Thus only for those materials for which W, < wo’ the
operating frequency, dispersive effects are non-negligible.

3.2.5.2 Layered Structure

Yet there still exists another source of dispersion, although y, €, o
are of non-dispersive character and ¢ may even be zero. For instance in
the case of oblique incidence on a grounded dielectric slab, dispersion will
be encountered due to the superposition of waves which results in a sep-
eration of phase and group velocities, deviating from the intrinsic velocity

of the medium.

3.3. Pulse Scattering from a Lossy Dielectric Layer Mounted

on a Perfectly Conducting Planar Surface.

To receive more insight into the problem of pulse scattering from
finite coated, convex scatterers, the planar case will be treated first for
both oblique T E and T M plane wave incidence for the general case of a
lossy dielectric layer. For simplicity a rectangular pulse of pulsewidth
T, carrier frequency wo‘ and amplitude fo(r =0, t =0) =1 is chosen,
propagating at an angle 6, to the normal of the interface as illustrated in
FIG. 3-4. The corresponding field quantity, normal to the plane of incidence

(in the TE - case the E - vector, in the TM - case the H - vector) is then
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described as:

2 t < ¢/e

ii(k_r, ) =% dexpt (kg -w t) §/c < t < g/c+T

0 €/c + T

IN
L d

(3.3.1)

where giz(cos Glz+sin Gly) (3.3.2a)
£l 0« 1, e -tut (3.3.2b)

F1 (k,v) =expk¢ (3.3.2¢)
w=1is8, s=-w (3.3.24)

This time dependent function Fi(k r, t) in turn can be expressed in terms

of an inverse Laplace transform:

H o A H oo
i X ts X_ ts -(8+iw )
Fkr t)2p=-| e F (s,p)ds=5=| e (i) Fi(s,1) (3.3.3)

(8 +iw)
B-i B-1i 0 ds
Any other shape of finite impulse can be obtained by convolution p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>